

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-99/0010 of 23 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Wedge anchor BZ plus and BZ-IG Product family Torque controlled expansion fastener to which the construction product belongs for use in concrete Manufacturer MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach Manufacturing plant MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach This European Technical Assessment 36 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-00-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-99/0010 issued on 6 April 2016

European Technical Assessment ETA-99/0010

Page 2 of 36 | 23 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 36 | 23 July 2018

Specific Part

1 Technical description of the product

The Wedge anchor BZ plus and BZ-IG is an fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Fastener type BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Fastener type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Fastener type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Fastener type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi static action	for BZ plus see Annex C1 to C5 for BZ-IG see Annex C11 to C13
Displacements	for BZ plus see Annex C9 to C10 for BZ-IG see Annex C15
Characteristic values for seismic performance categories C1 and C2	for BZ plus see Annex C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	for BZ plus see Annex C7 and C8 for BZ-IG see Annex C14

European Technical Assessment ETA-99/0010

Page 4 of 36 | 23 July 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 July 2018 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p. p. Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-99/0010 of 23 July 2018

Fastener version	Product description	Intended use	Pe	rformance
BZ plus	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex (C1 – Annex C10
BZ-IG	Annex A1 Annex A5 – Annex A7	Anhang B1 – Anhang B2 Anhang B8 – Anhang B10	Anhang C	11 – Anhang C15
Vedge anchor BZ	Expansion sleeve	Washer - He	exagon nut	18 to M20
] — v	18 to M20
			(N	124 to M27 1/27 zinc plated nly)
Vedge anchor BZ	-IG M6 to M12	п		
BZ-IG S				Hexagon head screw
BZ-IG SK	onical bolt	- Countersunk washer		Countersunk head screw
	Expansion sleeve	Washer Hexagon nut		merical dard rod
BZ-IG B				
BZ-IG B Wedge Anchor BZ	plus and BZ-IG			

Page 7 of European Technical Assessment ETA-99/0010 of 23 July 2018

Deutsches Institut für Bautechnik

Faste	ener size	9			M8	M10	M	12	M16	M20	0	M24	M27
Conic	al bolt			Thread	M8	M10	M	112	M16	M20)	M24	M27
				Ø d _k =	7,9	9,8	12	2,0	15,7	19,7	7	24	28
		Steel, zinc	plated	L	$65 + t_{\text{fix}}$	$80 + t_{fix}$	96,	5+t _{fix}	118+t _{fix} 137+		t _{fix} 1	61+t _{fix}	178+t _{fi}
Leng		A4, HCR	2	L	$65 + t_{\text{fix}}$	80 + t _{fix}	96,	5+trix	118+trix	137+	t _{fix} 1	68+t _{fix}	
fastener ¹⁾ reduced anchorag		e depth	Lnef.red	$54 + t_{\text{fix}}$	$60 + t_{fix}$	76,	5+tfix	98+t _{fix}			-	1.4	
Hexa	gon nut	anonorug	o o opin	SW	13	17	1	19	24	30		36	41
Tab	ole A2:	Material	s BZ pl		plus			1.24	3Z plus A	4		Z plus	
No.	Part			Steel, z	zinc plated Stainless steel High corresista			Stainless steel					
			galvar	nized ≥ 5µm	sherar	dized \ge 40	Dµm	A4		(HCR)			
ť	Conical	bolt	machine galvania	rmed or ed steel,	M8 to M Cold for machine sherardi cone pla	med or ed steel,	d	<u>M8 to M20:</u> Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated		M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated			
	Threade	ed bolt	M24 an	d M27:	M24 and M27: steel, sherardized M24: Stainless steel M24: High co resistar		Stainless steel						
	Threade	ed cone	Steel, g	alvanized	M24 and Steel, ga	<u>d M27:</u> alvanized	2	(e.g. 1.4401, 1.4404) EN 10088:2014		4	resistant steel 1.4529 or 1.4565, EN 10088:2014		
2	Expansi	ion sleeve	1.4401) EN 100 <u>M24 an</u> Steel ad	.g. 1.4301 or 88:2014, <u>d M27</u> :	1.4401)	.g. 1.4301 88:2014, d <u>M27:</u> cc. to	or	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014		(e.g. 1.457	(11) N	1.4404,	
За	3a Washer Steel, galvanize		alvanized	Statistics and statist		Stainless steel (e.g. 1.4401,			High corrosion resistant steel 1.4529				
Зb	Filling w	asher			Steel, zinc plated		1.4571) EN 10088:2014			or 1.4565, EN 10088:2014			
4	Hexago	n nut	Steel, g coated	alvanized,				and the second second second			565,	el 1.4529	

Wedge anchor BZ plus

Product description Dimensions and materials Annex A4

Page 10 of European Technical Assessment ETA-99/0010 of 23 July 2018

	king: BZ fastener identifying mar BZ fastener identit M6 size of internal 10 max. thickness (only Through- <u>Additional marking:</u> A4 stainless steel HCR high corrosion e.g.: BZ M6-10 Å	y thread of fixture setting insta resistant sta	Illation)	Internal thread		SK-IG
ble No.	A3: Fastener dimer	nsions B	Z-IG M6	M8	M10	M12
	Conical bolt with	Ødĸ	7,9	9,8	11,8	15,7
1	internal thread Pre-setting installation		50	62	70	86
	Through-setting installation		50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve	-	00 1 111		ble A4	
3	Washer				ble A4	
	Hexagon head screw wi	dth across flats	10	13	17	19
4	Pre-setting installation	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
_	Through-setting installation	Ls	14 to 20	18 to 22	20 to 22	25 to 28
5		ntersunk	17,3	21,5	25,9	30,9
1	washer	t	3,9	5,0	5,7	6,7
	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socke 8 mm
6			t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
6	Pre-setting installation	Lsĸ			25	30
	Through-setting installation	Lsĸ	16 to 20	20 to 25		
6	Through-setting installation Hexagon nut width a	L _{SK} cross flats	16 to 20 10	13	17	19
	Through-setting installationHexagon nutwidth aCommercialtype V	L _{SK} cross flats L _B ≥	16 to 20 10 t _{fix} + 21	13 t _{fix} + 28	17 t _{fix} + 34	t _{fix} + 41
7 8	Through-setting installationHexagon nutwidth aCommercialtype Vstandard rod ¹¹ type D	L _{SK} cross flats L _B ≥	16 to 20 10	13	17	t _{fix} + 41 41
7 8	Through-setting installationHexagon nutwidth aCommercialtype V	L _{SK} cross flats L _B ≥	16 to 20 10 t _{fix} + 21	13 t _{fix} + 28	17 t _{fix} + 34	t _{fix} + 41 41
7 8 acc. 1	Through-setting installationHexagon nutwidth aCommercialtype Vstandard rod ¹¹ type D	L _{SK} cross flats L _B ≥	16 to 20 10 t _{fix} + 21	13 t _{fix} + 28	17 t _{fix} + 34	t _{fix} + 41

I Stainless steel A4 9 Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated 01) Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	High corrosion resistant steel HCRHigh corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coatedStainless steel (e.g. 1.4401, 1.4571) EN 10088:2014High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coatedHigh corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coatedHigh corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coatedHigh corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated	
d (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated 31) Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014 High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565,	
(e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	(e.g. 1.4401, 1.4571) EN 10088:2014 High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014 High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565,	
(e.g. 1.4401, 1.4571) EN 10088:2014 Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	steel, 1.4529, 1.4565, EN 10088:2014 High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565,	
(e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	steel, 1.4529, 1.4565, EN 10088:2014, coated High corrosion resistant steel, 1.4529, 1.4565,	
(e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014,	steel, 1.4529, 1.4565,	
zinc plated, coated	steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated	
Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, coated	
Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, coated	
Stainless steel (e.g. 1.4401, 1.4571) 3 EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistan steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009	
	(e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70,	

Wedge Anchor BZ plus							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M27
Steel, galvanized				~			
Steel, sherardized				1			
Stainless steel A4 and high corrosion resistant steel HCR				1			-
Static or quasi-static action				1			
Fire exposure				1			
Seismic action (C1 and C2) 1)			~				-
Reduced anchorage depth 1)	M8	M10	M12	M16			
Steel, galvanized		1.12	~		1		
Steel, sherardized			1	1.11			
Stainless steel A4 and high corrosion resistant steel HCR			~				
Static or quasi-static action			~				
Fire exposure		1.11	~	10. m			
Seismic action (C1 and C2)			-				
only cold formed anchors acc. to Annex A3	-						
Wedge Anchor BZ-IG	M6	M8	M10	M12			
Steel, galvanized		1.00	~				
Stainless steel A4 and high corrosion resistant steel HCR			~]		
Static or quasi-static action		1.1	~		1		
Fire exposure			1		1		
Seismic action (C1 and C2)			*		1		
Base materials: • Compacted, reinforced or unreinforce • Strength classes C20/25 to C50/60 a • Cracked or uncracked concrete Use conditions (Environmental conditi • Structures subject to dry internal conditi	ccording to E	•	and the second se	fibers) ac	cording to	EN 206:20	13
(steel zinc plated, stainless steel or h	igh corrosion			and marin		ment or ov	nonuro t
 Structures subject to external atmosp permanently damp internal condition (stainless steel or high corrosion resi 	, if no particul				le environi	ment of ex	posure u
 Structures subject to external atmosp particular aggressive conditions (high corrosion resistant steel) 	oheric exposu	re and to p	permanentl	y damp int	ernal conc	lition, if oth	er
Note: Particular aggressive conditions			and and have a	unten la en	owntor or t	ho oplach z	ana of

Wedge Anchor BZ plus and BZ-IG

Intended use Specifications Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to
 supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to FprEN 1992-4: 2016 in conjunction with TR 055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person
 responsible for technical matters of the site
- · Hole drilling by hammer drill bit or vacuum drill bit
- . Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the BZ plus can be filled to reduce the hole. For this
 purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength
 mortar with compressive strength ≥ 50N/mm² (VMZ, VMU plus or VMH)
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

anhow	Anchor	B7	nlus	and	B7-IG
weuge	Allelioi	52	pius	anu	02-10

Intended use Specifications Annex B2

Deutsches Institut für Bautechnik

Fastener siz	e			M8	M10	M12	M16	M20	M24	M27
Nominal drill I	hole diameter	do	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanized	Tinst	[Nm]	20	25	45	90	160	200	300
Installation torque	Steel, sherardized	Tinst	[Nm]	16	22	40	90	160	260	300
	Stainless steel A4, HCR	Tinst	[Nm]	20	35	50	110	200	290	5-1
Diameter of clearance hole in the fixture		$d_{\rm f} \leq$	[mm]	9	12	14	18	22	26	30
Standard and	chorage depth									
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	
Effective	Steel, zinc plated	her	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	hei	[mm]	46	60	70	85	100	125	1.94
Reduced and	chorage depth									
Depth of drill hole		$h_{1,\text{red}} \geq$	[mm]	49	55	70	90			
Reduced effe depth	ctive anchorage	hef,red	[mm]	35	40	50	65		-	-
		h≥hmin,1 or	hmin,2							
			h1							

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concret	e member	1							
Steel zinc plated	1.00			_		_		_	
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete			_						_
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
in an approved a second	für c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
	für s ≥	[mm]	80	90	140	180	200	220	540
Uncracked concrete		[mm]	40	45	60	65	90	100	125
Minimum spacing	Smin für c ≥	[mm] [mm]	80	70	120	120	180	100	300
	Cmin	[mm]	50	50	75	80	130	100	180
Minimum edge distance	für s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR	101 3 2	fund 1	100	100	100	100	240	220	040
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	1
Cracked concrete	• trund, 1	from 1	,00	1 120	140	100			
	Smin	[mm]	40	50	60	60	95	125	
Minimum spacing	für c ≥	[mm]	70	75	100	100	150	125	
	Cmin	[mm]	40	55	60	60	95	125	
Minimum edge distance	für s ≥	[mm]	80	90	140	180	200	125	
Uncracked concrete									
Minimum apacina	Smin	[mm]	40	50	60	65	90	125	
Minimum spacing	für c ≥	[mm]	80	75	120	120	180	125	
Minimum adma distance	Cmin	[mm]	50	60	75	80	130	125	
Minimum edge distance	für s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concret	e member	11							
Steel zinc plated, stainless ste	el A4, HCI	R				5			
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	-		104
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	70			
Minimum spacing	für c ≥	[mm]	70	90	100	160			1.51
Minimum edge distance	Cmin	[mm]	40	50	60	80			
	für s ≥	[mm]	80	115	140	180			
Uncracked concrete	1000								
Minimum spacing	Smin	[mm]	40	60	60	80		10 E I	
	für c ≥	[mm]	80	140	120	180	-	1.0	1.1÷1
Minimum edge distance	Cmin	[mm]	50	90	75	90			
	für s ≥	[mm]	100	140	150	200			
Fire exposure from one side		_		-		-			
Minimum spacing	Smin.fi	[mm]			See no	ormal amb	ient tempe	erature	
Minimum edge distance	Cmin,fi	[mm]					ient tempe		
Fire exposure from more than	one side								
Minimum spacing	Smin,fi	[mm]			See no	ormal amb	ient tempe	erature	
Minimum edge distance	Cmin,fi	[mm]				≥ 300	mm		
ntermediate values by linear interpola	ation.								
Wedge anchor BZ plus									
weage anchor bz plus							_		

Fastener size			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete		1000		1	-	
Minimum anaging	Smin	[mm]	50	50	50	65
Minimum spacing	für c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	65	100
	für s ≥	[mm]	185	180	250	250
Uncracked concrete		1000				-
Minimum spacing	Smin	[mm]	50	50	50	65
Minimum spacing	für c \geq	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	100	170
Minimum edge distance	für s ≥	[mm]	185	180	185	65
Fire exposure from one side						
Minimum spacing	Smin,fi	[mm]	S	See normal amb	ient temperatur	е
Minimum edge distance	Cmin,fi	[mm] See normal ambient temperature				
Fire exposure from more than one side	•					
Minimum spacing	Smin,lī	[mm]	S	See normal amb	ient temperatur	e
Minimum edge distance	Cmin,fi	[mm]		≥ 300) mm	

Intermediate values by linear interpolation.

Wedge anchor BZ plus

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Annex B5

nst	tallation instructions	BZ plus	
1	90°	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.	
2		Blow out dust. Alternatively vacuum clean down to hole.	the bottom of the
3		Check position of nut.	
4		Drive in fastener, such that her or het,red depth is me ensured, if the thickness of fixture is not greater th thickness of fixture marked on the fastener in accord A3.	an the maximum
5	Ti De l	Installation torque T _{inst} shall be applied by using c wrench.	alibrated torque
dg	je anchor BZ plus		
	led Use ation instructions		Annex B6

1		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a.	
2		Blow out dust. Alternatively vacuum clean down to the bo	ttom of the hole.
3a		Check position of nut.	
3b		Fit the filling washer to the fastener. The thickness of the filling washer must be taken into acc	ount with t _{fix} .
4		Drive in fastener with filling washer, such that her or her,red compliance is ensured, if the thickness of fixture is 5mm s maximum thickness of fixture marked on the fastener in a Annex A3.	smaller than the
5	Tinst	Installation torque T_{inst} shall be applied by using calibrate	ed torque wrench.
6		Fill the annular gap between stud and fixture with mortar strength ≥ 50 N/mm ² VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe the processing mortar! The annular gap is completely filled, when excess morta	information of the
			1
-	e anchor BZ plus		
end	ed Use		Annex B

Fastener size				M6	M8	M10	M12
Effective anchorage depth		hef	[mm]	45	58	65	80
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		h₁ ≥	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{\text{sd}}{}^{2)} \geq$	[mm]	9	12	15	18
In the line is a second second	1.7.	S	[Nm]	10	30	30	55
Installation torque, steel zinc plated	Tinst	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
Installation torque, stainless steel A4, HCR		S	[Nm]	15	40	50	100
	Tinst	SK	[Nm]	12	25	45	60
staniess steer A4, non		В	[Nm]	8	25	40	80
Pre-setting installation		-					
Diameter of clearance hole in the fixture	-	dr≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
	101101	В	[mm]	1	1	1	1
Through-setting installation							
Diameter of clearance hole in the fixture	-	dr≤	[mm]	9	12	14	18
		S	[mm	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of Pre-setting installation, if the shear load at steel failure is designed with lever arm.

2) see Annex A5

Table B5: Minimum spacings and edge distances BZ-IG

Fastener size			MG	M8	M10	M12		
Minimum thickness of concrete member	hmin	[mm]	100	120	130	160		
Cracked concrete								
Minimum apaging	Smin	[mm]	50	60	70	80		
Minimum spacing	für c ≥	[mm]	60	80	100	120		
Minimum odgo distance	Cmin	[mm]	50	60	70	80		
Minimum edge distance	für s ≥	[mm]	75	100	100	120		
Uncracked concrete								
Minimum appaind	Smin	[mm]	50	60	65	80		
Minimum spacing	für c ≥	[mm]	80	100	120	160		
Minimum edge distance	Cmin	[mm]	50	60	70	100		
Minimum edge distance	für s ≥	[mm]	115	155	170	210		
Fire exposure from one side				and the second				
Minimum spacing	Smin.li	[mm]		See normal	temperature	perature		
Minimum edge distance	Cmin.fi	[mm]	See normal temperature					
Fire exposure from more than one side								
Minimum spacing	Smin,fi	[mm]		See normal	temperature			
Minimum edge distance	Cmin,fi	[mm]		≥ 300) mm			
termediate values by linear interpolation.								
Vedge anchor BZ-IG					100	_		
ntended use Installation parameters, minimum spacings and	edge dist	ances BZ	z-IG		Ani	nex B8		

1	90° ¥	Drill hole perpendicular to concrete surface. If using vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Setting tool for pre-setting installation insert in fastener.
4		Drive in fastener with setting tool.
5		Drive in srew.
6	Tinst	

1	90°	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.	
2		Blow out dust. Alternatively vacuum clean dow	n to the bottom of the hole.
3	► BZ-IGS	Setting tool for through-setting installation in	nsert in fastener.
4	BZ-IGS	Drive in fastener with setting tool.	
5		Drive in screw.	
6		st Installation torque T _{inst} may be applied by usin	g calibrated torque wrench.
dg	je anchor BZ-IG		

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	Yinst	[-]	-			1,0			
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out							1.1.1		
Standard anchorage depth									
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth				-					
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	7,5	1).	Ð		-	52
Increasing factor for $N_{Rk,p}$	ψc	[-]	1			$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									-
Effective anchorage depth	her	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	hei,red	[mm]	35 ²⁾	40	50	65		-	\sim
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]	16.00		275.7	7,7			

Wedge anchor BZ plus

Performance

Characteristic values for tension loads, BZ plus zinc plated, cracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	Yinst	[-]				1,0		-
Steel failure								_
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25	N _{Bk,p}	[kN]	5	9	16	25	4)	40
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	7,5	1)	1)		-1
Increasing factor for $N_{\text{Rk},p}$	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$			
Concrete cone failure								
Effective anchorage depth	het	[mm]	46	60	70	85	100	125
Reduced anchorage depth	hel,red	[mm]	35 ²⁾	40	50	65	-	
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]		(7	,7		

Performance

Characteristic values for tension loads, BZ plus A4 / HCR, cracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	Yinst	[-]				1,0			
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1.	53	1	,5	1,6		.5
Pull-out	1						1		
Standard anchorage depth									
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	-1)	1)
Reduced anchorage depth									
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	n-st	27	-
Splitting									
Standard anchorage depth									
Splitting for standard thickness o cor.sp may be linearly interpolated for the	f concrete e member thi	membe ckness h	e r (The hi 1 _{min,2} < h <	gher resista < h _{min,1} (Cas	ance of cas se 2); ψ _{h,sp} =	e 1 and ca = 1,0))	se 2 may b	e applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1								-	
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	20	30	40	62,3	50
Edge distance	Ccr,sp	[mm]				1,5 hef		-	
Case 2					1				
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	25	35	50,5	62,3	70,6
Edge distance	Ccr.sp	[mm]		2	her		2,2 hef	1,5 het	2,5 h
Splitting for minimum thickness of	of concrete	membe	er	1					
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		100	
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	1.1.1.	12	16	25	35	1.51	1	-
Edge distance	Ccr.sp	[mm]		2,5	hef				
Reduced anchorage depth				1	r				
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	7,5	9	17,9	26,5	~	~	1
Edge distance	Ccr,sp	[mm]	100	100	125	150			
Increasing factor for N _{Rk.p} and N ⁰ _{Rk.sp}	ψс	[-]	à 1	1		$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure				2					
Effective anchorage depth	her	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	hef,red	[mm]	35 ²⁾	40	50	65			1.1
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]				11,0			
Pull-out is not decisive		nte statio	ally indet	erminate					
Use restricted to anchoring of structu	rai componei	no static	any maon	onninitiatio					

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	Yinst	[-]			1	,0		
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1,	5		1,68	1,5
Pull-out		100						
Standard anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{RK,p}	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	3.0	-
Splitting								_
Standard anchorage depth								
Splitting for standard thickness of c _{cr,sp} may be linearly interpolated for the						case 2 may	be applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1					_			_
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	20	30	40	8
Edge distance	Ccr,sp	[mm]	_		1,5	hef		
Case 2		-						
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	25	35	50,5	70,6
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of	concrete me	mber	_					
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		1.1
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	25	35		~
Edge distance	Ccr.sp	[mm]		2,5				
Reduced anchorage depth					_			
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in uncracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	d a	-
Edge distance	Ccr.sp	[mm]	100	100	125	150		
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	-) ^{0,5}		
Concrete cone failure				(1.2.2
Effective anchorage depth	her	[mm]	46	60	70	85	100	125
Reduced anchorage depth	hef red	[mm]	35 ²⁾	40	50	65		-
Factor for uncracked concrete	$k_1 = K_{ucr,N}$	[-]			11	,0		
Pull-out is not decisive	al components s	atically in	ndetermina	te				
Use restricted to anchoring of structura		A. I. S. A. A. T						

Fastener size				M8	M10	M12	M16	M20	M24	M27
Installation factor		Yinst	[-]				1,0			
Steel failure without	ut lever arm, Steel	zinc pla	ted					,		
Characteristic resist	ance	V ⁰ Rk,s	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k 7	[-]				1,0			
Partial factor	1	γ́Ms	[-]	1,25 1,33 1,25						1,25
Steel failure witho	ut lever arm, Stainl	ess stee	el A4, H	CR						
Characteristic resist	ance	V ⁰ Rk,s	[kN]	13 20 30 55		86	123,6			
Ductility factor		k 7	[-]	1,0						
Partial factor		γMs	[-]		= 1,	25		1,4	1,25	
Steel failure with le	ever arm, Steel zin	c plated								
Characteristic bending resistance		M ⁰ Rk,s	[Nm]	23	47	82	216	363	898	1331,5
Partial factor		γMs	[-]		1,	25	1.2	1,33	1,25	1,25
Steel failure with le	ever arm, Stainless	steel A	4, HCR				- 1 -		1.1.1	
Characteristic bend	ng resistance	M ⁰ Rk,s	[Nm]	26	52	92	200	454	785,4	1
Partial factor		γMs	[-]		1,	.25	1,4	1,25		
Concrete pry-out f	ailure	_								
Pry-out factor		kа	[-]		2	,4	1	2,8		
Concrete edge fail	ure) I
Effective length of	Steel zinc plated	Jr	[mm]	46	60	70	85	100	115	125
fastener in shear loading with h et	Stainless steel A4, HCR	lt	[mm]	46	60	70	85	100	125	•
Effective length of	Steel zinc plated	If.red	[mm]	35 ¹⁾	40	50	65		1	
fastener in shear loading with h ef,red	Stainless steel A4, HCR	I _{f,red}	[mm]	35 ¹⁾	40	50	65		× .	Ŷ
Outside diameter of	fastener	dnom	[mm]	8	10	12	16	20	24	27

Wedge anchor BZ plus

Performance

Characteristic values for shear loads, BZ plus, cracked and uncracked concrete, static or quasi static action

Fastener siz	e			M8	M10	M12	M16	M20		
Tension load	ls									
Installation fa	ctor	γinst	[-]			1,0				
Steel failure,	Steel zinc plate	ed								
Characteristic	resistance C1	NRk.s.eq.C1	[kN]	16	27	40	60	86		
Characteristic	resistance C2	NRk,s,eq,C2	[kN]	16	27	40	60	86		
Partial factor		γMs	[-]	1.	53	1	1,5 1,6			
Steel failure,	Stainless steel	A4, HCR								
Characteristic	resistance C1	NRK.S.eq.C1	[kN]	16	27	40	64	108		
Characteristic	resistance C2	NRk,s,eq,C2	[kN]	16	27	40	64	108		
Partial factor		γMs	[-]			1,68				
Pull-out (stee	el zinc plated, sta	ainless stee	A4 and	HCR)						
Characteristic	resistance C1	NRk,p.eq.C1	[kN]	5	9	16	25	36		
Characteristic	resistance C2	NRk,p,eq,C2	[kN]	2,3	3,6	10,2	13,8	24,4		
Shear loads										
Steel failure	without lever an	rm, Steel zi	nc plate	d	2 - Carlo 11	1	1.			
Characteristic	resistance C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69		
Characteristic	resistance C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2		
Partial factor		γMs	[-]		1,	25		1,33		
Steel failure	without lever an	rm, Stainle	ss steel	A4, HCR	L. T. e			1.11		
Characteristic	resistance C1	VRk,s,eq,C1	[kN]	9,3	20	27 44		69		
Characteristic	resistance C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2 35,7		55,2		
Partial factor	the second second	γMs	[-]		1,	25		1,4		
Factor for	without filling of annular gap	Сlgap	[-]			0,5				
annular gap	with filling of annular gap	Юgap	[-]		1.0					

Fastener size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel, zinc plate	ed									
1 -	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6
Characteristic	R60		ILAN .	1,1	1,9	3,0	5,6	8,2	11,8	15,3
resistance	R90	- NRk,s,fi	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
14 C	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60	N	tion 1	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	- NRk.s,fi	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	1.5
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Shear load		_	,							
Steel failure wit	hout lever a	rm								
Steel, zinc plate	ed	-								-
	R30	-		1,6	2,6	4,1	7,7	11	16	20,6
Characteristic resistance	R60	0.00		1,5	2,5	3,6	6,8	11	15	19,8
	R90	- VRk,s.fi	[kN]	1,2	2,1	3,5	6,5	10	15	19.0
	R120	-		1.0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	2
Characteristic	R60		[kN]	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	- V _{Rk,s,fi}		2,0	3,6	6,1	11,5	16,4	23,6	
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Steel failure wit	h lever arm					1				
Steel, zinc plate	d				-		-		_	
1000 A 1000 A 1000	R30			1,7	3,3	6,4	16,3	29	50	75
Characteristic	R60	-		1,6	3,2	5,6	14	28	48	72
resistance	R90	- M ⁰ Rk,s,fi	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120			1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR									
and the second	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Characteristic	R60	-		2,9	6,8	14,6	37,2	66,1	114,3	
resistance	R90	- M ⁰ Rk,s,fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	1
	R120			1,6	3,6	7,0	17,8	32,1	55,5	
	1120			1,0	5,0	7,0	17,0	52,1	55,5	

Wedge anchor BZ plus

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

		-		M8	M10	M12	M16
Steel failure Steel, zinc plated							
Steel, zinc plated							
	R30	_		1,5	2,6	4,1	7,7
Characteristic	R60	- N _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6
resistance	R90	INEK,S,b	[KN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60	- N _{Rk,s,fi}	[kN]	2,5	5,3	9,4	17,6
resistance	R90	-	Local	1,9	3,6	6,1	11,5
6	R120			1,6	2,8	4,5	8,4
Shear load							
Steel failure withou	it lever arm						
Steel, zinc plated							3
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	- V _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6
resistance	R90	V Hk,s,h		0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	HCR						
	R30	— V _{Rk,s,fi}		3,2	6,9	12,7	23,7
Characteristic	R60		[kN]	2,5	5,3	9,4	17,6
resistance	R90		[KIA]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with le	ver arm						
Steel, zinc plated							
	R30			1,5	3,3	6,4	16,3
Characteristic	R60	- M ⁰ Rk,s,fi	[Nm]	1,2	2,5	4,7	11,9
resistance	R90	IVI HK,S,N	fram	0,8	1,7	3,0	7,5
Sector Sector	R120			0,6	1,2	2,1	5,3
Stainless steel A4,	HCR						
	R30			3,2	8,9	19,7	50,1
Characteristic	R60	- M ⁰ Rk,s,fi	[Nm]	2,6	6,8	14,6	37,2
resistance	R90	- IVI HK,S,N	fisiol	2,0	4,7	9,5	24,2
	R120			1,6	3,6	7,0	17,8

		M8	M10	M12	M16	M20	M24	M27
								-
		_						
N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
δΝΟ	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
δN∞	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
δΝο	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
δN∞	[mm]	0	,8	1,4		0,8		1,4
ds C2			_		_	_		
δN,eq,(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
$\delta_{N,eq(ULS)}$	[mm]	8,2	13,8	15,7	9,5	15,2		
N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
δησ	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	_
δΝ∞	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
δΝΟ		0,6	0,5	0,7	0,2	0,4	0,5	-
δΝα	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
ids C2								
δN,eq(DLS)	[mm]	2,3	4,1	4,9	3,6	5,1		
δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	1	-
ICR								_
N	[kN]	2,4	3,6	6,1	9,0			
δΝο	[mm]	0,8	0,7	0,5	1,0		-1	-
δN=	-	1,2	1.0	0.8	1,1			
					4		-	
		1	1			-	2	
	δN0 δN∞ N δN0 δN∞ dds C2 δN,eq,(DLS) δN,eq(ULS) N δN∞ N δN.eq(DLS) δN.eq(ULS) KCR N	$\frac{\delta_{N0}}{\delta_{N\infty}} [mm]$ $\frac{\delta_{N\infty}}{[mm]}$ $N [kN]$ $\frac{\delta_{N\infty}}{\delta_{N\infty}} [mm]$ $\frac{\delta_{N\infty}}{mm}$ $\frac{\delta_{N\infty}}{mm}$ $\frac{\delta_{N,eq,(DLS)}}{mm}$ $\frac{\delta_{N,eq,(DLS)}}{mm}$ $\frac{\delta_{N\infty}}{mm}$ $\frac{\delta_{N\alpha}}{mm}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth	1								
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{V,eq(\text{DLS})}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{V,eq(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	v	[kN]	7,3	11,4	17,1	31,4	43,8		
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	-
Displacement	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	-
Displacements under seismi	c shear loa	ds C2			4				
Displacements for DLS	$\delta v_{\text{,eq}(\text{DLS})}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{V,eq(\text{ULS})}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Reduced anchorage depth	Ú.								
Steel zinc plated					_			_	
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5			-
a lopid of mont	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR					_		_		
Shear load in cracked and uncracked concrete	v	[kN]	7,3	11,4	17,1	31,4			
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3			-
- 15 March and a	δv∞	[mm]	2,9	3,6	5,9	6,4			

Performance

Displacements under shear load

Fastener size			M6	M8	M10	M12
Installation factor	Yinst	[-]		1,	2	
Steel failure						
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Partial factor	γмь	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0
	γ́Ms	[-]	1,87			
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	9	12	20
Increasing factor for $N_{Rk,\rho}$	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure						
Effective anchorage depth	her	[mm]	45	58	65	80
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]		7	.7	

Wedge anchor BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12	
Installation factor	Yinst	[-]		1,	2		
Steel failure		0.00					
Characteristic resistance, steel zinc plated	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]		1	5		
Characteristic resistance, stainless steel A4, HCR	N _{Rk,s}	[kN]	14,1	25,6	35,8	59,0	
Partial factor	γMs	[-]	[-] 1,87				
Pull-out							
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	20	30	
Splitting (the higher resistance of Case 1 and	d Case 2 may	be applied)				
Minimum thickness of concrete member	hmin	[mm]	100	120	130	160	
Case 1		_					
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	9	12	16	25	
Edge distance	Ccr.sp	[mm]	1,5 h _{ef}				
Case 2							
Characteristic resistance in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	20	30	
Edge distance	Ccr.sp	[mm]		2,5	hef		
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,5}$		
Concrete cone failure				- + 2			
Effective anchorage depth	her	[mm]	45	58	65	80	
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		- 11	,0		

Wedge anchor BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	3/	[-]		1 102	.0	
BZ-IG, steel zinc plated	Yinst		-		,0	-
Steel failure without lever arm, Pre-setting	installat	ion			_	
Characteristic resistance	V ⁰ Rk,s	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Through-se	V P 902		5,0	0,0	10,4	20,0
Characteristic resistance	V ⁰ Rk.s	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Pre-setting ins			5,1	7,0	10,0	24,0
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Through-settir			12,5	00,0	00,0	104,0
Characteristic bending resistance	M ⁰ Rk.s	[Nm]	36,0	53.2	76,0	207
Partial factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]			25	
Ductility factor	k7	[-]			,0	
BZ-IG, stainless steel A4, HCR		1 1 1			,•	
Steel failure without lever arm, Pre-setting	installat	ion				
Characteristic resistance	V ⁰ Rk,s	[kN]	5,7	9,2	10,6	23,6
Partial factor	γMs	[-]			25	1 10,0
Steel failure without lever arm, Through-se	1.1	1 1	-			-
Characteristic resistance	V ⁰ Rk.s	[kN]	7,3	7,6	9,7	29,6
Partial factor	γMs	[-]	012		25	
Steel failure with lever arm, Pre-setting ins						
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	10,7	26,2	52,3	91,6
Partial factor	γMs	[-]		1,	56	1
Steel failure with lever arm, Through-settin						
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	28,2	44,3	69,9	191,2
Partial factor	γMs	[-]		1,	25	
Ductility factor	k7	[-]		.1,	0	
Concrete pry-out failure						
Pry-out factor	k ₈	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of fastener in shear loading	lf	[mm]	45	58	65	80
Effective diameter of fastener	dnom	[mm]	8	10	12	16

Wedge anchor BZ-IG

Performance

Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action

Fastener size				M6	M8	M10	M12
Tension load							
Steel failure							
Steel zinc plated	1						
Acr - 19	R30			0,7	1,4	2,5	3,7
Characteristic	R60	N _{Rk,s,fi}	[kN]	0,6	1,2	2,0	2,9
resistance	R90	INHK,S,N		0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	NRk,s,li	[kN]	1,9	3,8	6,3	9,2
resistance	R90	1404,5,0	trad	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Shear load							
Steel failure with	nout lever arm						
Steel zinc plated	l.						· · · · · · · · ·
	R30			0,7	1,4	2,5	3,7
Characteristic	R60	V _{Rk,s,fi}	ILANI	0,6	1,2	2,0	2,9
resistance	R90	V Fik,s,fi	[kN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	4, HCR	100 C					
	R30	-		2,9	5,4	8,7	12,6
Characteristic	R60	VRk.s.fi	[kN]	1,9	3,8	6,3	9,2
resistance	R90	* na _i sii	trad	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure with	i lever arm						
Steel zinc plated						1	1
	R30		_	0,5	1,4	3,3	5,7
Characteristic	R60	M ⁰ Rk,s,fi	[Nm]	0,4	1,2	2,6	4,6
resistance	R90			0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel A							
	R30			2,2	5,5	11,2	19,6
Characteristic resistance	R60	M ⁰ Rk,s,fi	[Nm] -	1,5	3,9	8,1	14,3
iesistance	R90			0,7	2,2	5,1	8,9
	R120		-	0,4	1,3	3,5	6,2

Fastener size			M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements	δΝΟ	[mm]	0,6	0,6	0,8	1,0
Displacements	δNæ	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	Ν	[kN]	4,8	6,4	8,0	12,0
Disala anna ta	δηο	[mm]	0,4	0,5	0,7	0,8
Displacements	δν∞	[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, BZ-IG

Fastener size			M6	M8	M10	M12
Shear load in cracked and uncracked concrete	V	[kN]	4,2	5,3	6,2	16,9
	δνα	[mm]	2,8	2,9	2,5	3,6
Displacements	δν∞	[mm]	4,2	4,4	3,8	5,3

Wedge anchor BZ-IG

Performance

Annex C15

Displacements under tension load and under shear load BZ-IG