

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0444 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Injection system for use in concrete

Ferrometal Oy Karhutie 9 FI-01900 NURMIJÄRVI FINNLAND

Plant 1, Finland

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0444 English translation prepared by DIBt

Page 2 of 21 | 6 October 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 6 October 2017

Specific Part

1 Technical description of the product

The "Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Fix Master FIT-Ve 200 or Fix Master FIT-Wi 200 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-17/0444

Page 4 of 21 | 6 October 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *Beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-17/0444 of 6 October 2017

Table A1: Materials

Dert	art Designation Material							
	-							
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 μm acc. to EN ISO		2:2009					
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 1993 $A_5 > 8\%$ fracture elongation						
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 1020 Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	EN ISO 898-2:2012, SO 898-2:2012,					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Stain	less steel							
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 Property class 50 EN ISO 3506-1:2009 Property class 70 (\leq M24) EN ISO 3506- A ₅ > 8% fracture elongation	1:2009					
2	Hexagon nut, EN ISO 4032:2012		Property class 50 (for class 50 rod) EN ISO 3506-2:2009 Property class 70 (\leq M24) (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	0088-1:2005					
High	corrosion resistance steel							
1	Anchor rod	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:200 Property class 50 (for class 50 rod) EN IS Property class 70 (\leq M24) (for class 70 ro	SO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	05					
Reinf	orcing bars							
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013					
	1							
Fix	Master Injection system FIT-Ve 200, FI	T-Wi 200 for concrete						
Prod Mate	luct description rials		Annex A 4					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete

Intended Use Specifications Annex B 1

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharges depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >				()			
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				$h_{ef} + 2d_0$		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective encharge donth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160
1										

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete

Intended Use

Annex B 2

Installation parameters

Steel brush RBT \Box Table B3: Parameter cleaning and setting tools d_{b,min} Piston Threaded \mathbf{d}_0 db Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm) (mm) (mm) (mm)(mm)(No.) M8 12 10 RBT10 10.5 M10 8 12 RBT12 14 12,5 No M12 10 14 RBT14 16 14.5 piston plug 12 16 RBT16 18 16,5 required 14 M16 18 RBT18 20 18,5 16 20 RBT20 22 20,5 24 RBT24 VS24 M20 20 26 24,5 M24 28 RBT28 30 28,5 VS28 M27 25 32 RBT32 34 VS32 32,5 M30 28 35 RBT35 37 35,5 VS35 VS40 32 40 RBT40 41,5 40,5

Hand pump (volume 750 ml) Drill bit diameter (d_0) : 10 mm to 20 mm - uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete	
Intended Use	Annex B

Cleaning and setting tools

33

Installation inst	ructions						
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). drill hole: the drill hole shall be filled with mortar						
	Attention! Standing water in the bore hole must be remove	d before cleaning.					
4x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a min the bore hole ground is not reached an extension shall be used	imum of four times. If					
or	The hand-pump can only be used for anchor sizes in uncracke bore hole diameter 20mm or embedment depth up to 240mm.	d concrete up to					
4x	Compressed air (min. 6 bar) can be used for all sizes in cracker concrete.	d and uncracked					
**********	 Check brush diameter (Table B3) and attach the brush to a drill or a battery screwdriver. Brush the hole with an appropriate size > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush e shall be used (Table B3). 	ed wire brush					
or	2C. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can <u>only</u> be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.						
4x	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again. ¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an e 240 mm also in cracked concrete with hand-pump.	hole. If necessary, the mortar.					
	 Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended w (Table B4 or B5) as well as for new cartridges, a new static-mix 	orking time					
(La da para a ser en constanti a s - hef	4. Prior to inserting the anchor rod into the filled bore hole, the pose mbedment depth shall be marked on the anchor rods.	sition of the					
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive compone shows a consistent grey colour. For foil tube cartridges is must be minimum of six full strokes.	nts until the mortar					
Fix Master Injection	on system FIT-Ve 200, FIT-Wi 200 for concrete						
ntended Use		Annex B 4					

Installation instructions

nstallation instr	uctions (continuation)	
	6. Starting from the bottom or back of the cleaned anchor hole fill t approximately two-thirds with adhesive. Slowly withdraw the sta the hole fills to avoid creating air pockets. For embedment large extension nozzle shall be used. For overhead and horizontal ins plug (Annex B 3) and extension nozzle shall be used. Observe t times given in Table B4 or B5.	tic mixing nozzle as r than 190 mm an tallation a piston
	7. Push the threaded rod or reinforcing bar into the anchor hole when ensure positive distribution of the adhesive until the embedment	depth is reached.
	The anchor should be free of dirt, grease, oil or other foreign ma	iterial.
	8. Be sure that the anchor is fully seated at the bottom of the hole mortar is visible at the top of the hole. If these requirements are application has to be renewed. For overhead application the ar fixed (e.g. wedges).	not maintained, the
+20°C	9. Allow the adhesive to cure to the specified time prior to applyin Do not move or load the anchor until it is fully cured (attend Tak	
Tinst.	 After full curing, the add-on part can be installed with the max. (Table B2) by using a calibrated torque wrench. 	orque
ix Master Injectio	on system FIT-Ve 200, FIT-Wi 200 for concrete	
ix muster injeotic		

+ 20 °C to +29°C + 30 °C to +34°C + 35 °C to +39°C > + 40 °C Cartridge temperature In wet concrete the curing time	90 min ²⁾ 90 min 90 min 45 min 25 min 15 min 6 min 4 min 2 min 1,5 min +5°C to +4 ne must be doubled. pe at min. +15°C.	24 h ²⁾ 14 h 7 h 2 h 80 min 45 min 25 min 20 min 15 min +40°C
$\begin{array}{c cccc} 0 & ^{\circ}\text{C} & \text{to} & +4^{\circ}\text{C} \\ +5 & ^{\circ}\text{C} & \text{to} & +9^{\circ}\text{C} \\ +10 & ^{\circ}\text{C} & \text{to} & +19^{\circ}\text{C} \\ +20 & ^{\circ}\text{C} & \text{to} & +29^{\circ}\text{C} \\ +30 & ^{\circ}\text{C} & \text{to} & +34^{\circ}\text{C} \\ +35 & ^{\circ}\text{C} & \text{to} & +39^{\circ}\text{C} \\ \hline & > +40 & ^{\circ}\text{C} \\ \hline & \\ \hline & \\ \text{Cartridge temperature} \\ \hline \\ \text{In wet concrete the curing time} \end{array}$	45 min 25 min 15 min 6 min 4 min 2 min 1,5 min +5°C to +4 ne must be doubled.	7 h 2 h 80 min 45 min 25 min 20 min 15 min
+5 °C to +9°C + 10 °C to +19°C + 20 °C to +29°C + 30 °C to +34°C + 35 °C to +39°C > + 40 °C Cartridge temperature In wet concrete the curing time	25 min 15 min 6 min 4 min 2 min 1,5 min +5°C to +4 ne must be doubled.	2 h 80 min 45 min 25 min 20 min 15 min
+ 10 °C to +19°C + 20 °C to +29°C + 30 °C to +34°C + 35 °C to +39°C > + 40 °C Cartridge temperature In wet concrete the curing time	15 min 6 min 4 min 2 min 1,5 min +5°C to +4 ne must be doubled.	80 min 45 min 25 min 20 min 15 min
+ 20 °C to +29°C + 30 °C to +34°C + 35 °C to +39°C > + 40 °C Cartridge temperature In wet concrete the curing time	6 min 4 min 2 min 1,5 min +5°C to +4 ne must be doubled.	45 min 25 min 20 min 15 min
+ $30 \degree C$ to + $34\degree C$ + $35\degree C$ to + $39\degree C$ > + $40\degree C$ Cartridge temperature In wet concrete the curing time	4 min 2 min 1,5 min +5°C to +4 ne must be doubled.	25 min 20 min 15 min
+ 35 °C to +39°C > + 40 °C Cartridge temperature In wet concrete the curing time	2 min 1,5 min +5°C to +4 ne must be doubled.	20 min 15 min
> + 40 °C Cartridge temperature In wet concrete the curing time	1,5 min +5°C to +4	15 min
	+5°C to +4	
In wet concrete the curing time	ne must be doubled.	+40°C
In wet concrete the curing time Cartridge temperature must be	ie must be doubled. ie at min. +15°C.	
		Minimum curing time
Concrete temperature	Gelling- / working time	in dry concrete ¹⁾
-20 °C to -16°C	Gelling- / working time 75 min	in dry concrete ¹⁾ 24 h
-		in dry concrete ¹⁾
-20 °C to -16°C	75 min	in dry concrete ¹⁾ 24 h
-20 °C to -16°C -15 °C to -11°C	75 min 55 min	in dry concrete ¹⁾ 24 h 16 h
-20 °C to -16°C -15 °C to -11°C -10 °C to -6°C	75 min 55 min 35 min	in dry concrete ¹⁾ 24 h 16 h 10 h
-20 °C to -16°C -15 °C to -11°C -10 °C to -6°C -5 °C to -1°C	75 min 55 min 35 min 20 min	in dry concrete ¹⁾ 24 h 16 h 10 h 5 h
-20 °C to -16°C -15 °C to -11°C -10 °C to -6°C -5 °C to -1°C 0 °C to +4°C	75 min 55 min 35 min 20 min 10 min	in dry concrete ¹⁾ 24 h 16 h 10 h 5 h 2,5 h

Size					M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic ten	sion resistance, Steel failure										
Steel,	Property clas	s 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel,	Property clas	s 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property clas	s 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Nichtr	rostender Stah	nl A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nichtr	rostender Stah	nl A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Chara	acteristic ten	sion resistance, Partial safety factor										
Steel,	Property clas	s 4.6	γ _{Ms,N} ¹⁾	[-]				2	,0			
Steel,	Property clas	s 4.8	γ _{Ms,N} ¹⁾	[-]				1	,5			
Steel,	Property clas	s 5.8	γ _{Ms,N} ¹⁾	[-]				1	,5			
Steel,	Property clas	γ _{Ms,N} ¹⁾	[-]				1	,5				
Stainless steel A4 and HCR, Property class 50 $$\gamma_{\rm Ms,N}$^{1)}$$								2,	86			
Stainless steel A4 and HCR, Property class 70 $$\gamma_{\rm Ms,N}$^{1)}$$					1,87							
Chara	acteristic she	ar resistance, Steel failure										
E	Steel, Prope	erty class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
/er a	Steel, Prope	erty class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without lever arm	Steel, Prope	erty class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
ithou	Stainless ste	eel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
3	Stainless ste	eel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
c	Steel, Prope	erty class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
r arm	Steel, Prope	erty class 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
With lever	Steel, Prope	erty class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Vith	Stainless ste	eel A4 and HCR, Property class 50	M _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
-	Stainless ste	eel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
		ar resistance, Partial safety factor										
	Property clas		γ _{Ms,V} ¹⁾	[-]				1,	67			
	Property clas		γ _{Ms,V} ¹⁾	[-]				,	25			
	Property clas		γ _{Ms,V} ¹⁾	[-]					25			
-	Property clas		γ _{Ms,V} ¹⁾	[-]					25			
		and HCR, Property class 50	γ _{Ms,V} ¹⁾	[-]					38			
Stainl	ess steel A4 a	and HCR, Property class 70	γ _{Ms,V} 1)	[-]				1,	56			

¹⁾ in absence of national regulation

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	alatanaa	N _{Rk,s}	[kN]				see Ta	lble C1			
Characteristic tension re	sistance	N _{Rk,s,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Partial safety factor		γms,N	[-]				see Ta	ble C1			
Combined pull-out and	l concrete failure										
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	No Perf		Determine	d (NPD)
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5			Determine	<u>, </u>
Temperature range III: 120°C/72°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0	No Perf	ormance	Determine	d (NPD)
Characteristic bond resi	stance in cracked concre		IN1/ 07	4.0						0.5	65
-	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I: 40°C/24°C		τ _{Rk,C1}	[N/mm ²]	2,5 4,0	3,1 4,0	3,7 5,5	3,7	3,7	3,8	4,5	4,5
40 0/24 0	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	2,5	2,5	3,7	5,5 3,7			Determine Determine	、 ,
		τ _{Rk,C1}	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet concrete	τ _{Rk,cr} τ _{Rk,C1}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3.1
80°C/50°C		τ _{Rk,cr}	[N/mm ²]	2,5	3.0	4,0	4,0	,	,	Determine	,
	flooded bore hole	TRK,C1	[N/mm ²]	1,6	1,9	2,7	2,7			Determine	, ,
		$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III: 120°C/72°C	dry and wet concrete	T _{Rk,C1}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
		τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	No Perf	ormance	Determine	d (NPD)
	flooded bore hole	T _{Rk,C1}	[N/mm ²]	1,3	1,6	2,0	2,0	No Perf	ormance	Determine	d (NPD)
		C25/3	30	1,02							
		C30/3	37	1,04							
Increasing factors for co (only static or quasi-stat		C35/4		1,07							
Ψ_c		C40/		1,08							
		C45/5		1,09							
—		C50/6	60					10			
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	- k ₈	[-]				10),1			
Section 6.2.2.3	Cracked concrete	1.0					7	,2			
Concrete cone failure				_							
Factor according to	Non-cracked concrete	k _{ucr}	[-]				10),1			
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	,2			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]					h _{ef}			
Splitting		OCI,N	[]				0,0				
Edge distance		C _{cr,sp}	[mm]		1,0	$h_{ef} \le 2$	$2 \cdot h_{ef} (2,$	$5 - \frac{h}{h_{ef}}$) ≤ 2,4 ·	h _{ef}	
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation safety factor	(dry and wet concrete)	γ2 = γinst		1,0				1,2			
Installation safety factor	(flooded bore hole)	$\gamma_2 = \gamma_{inst}$			1,	4		No Perf	ormance	Determine	d (NPD

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete

Performances Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1) Annex C 2

Table C3:Characteristic valueseismic action (per					tatic,	quasi-	static	actior	n and	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance	V _{Rk,s}	[kN]				see Ta	ble C1			
	V _{Rk,s,C1}	[kN]	0,70 • V _{Rk,s}							
Partial safety factor	γ̃Ms,∨	[-]								
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0	,8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]				see Ta	ble C1			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Perfo	ormance l	Determine	d (NPD)		
Partial safety factor	γMs,V	[-]				see Ta	able C1			
Concrete pry-out failure	·									
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎		2,0							
Installation safety factor	$\gamma_2 = \gamma_{inst}$	1,0								
Concrete edge failure										
Effective length of anchor	lf	[mm]				l _f = min(h	l _{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2=\gamma_{inst}$					1	,0			
Fix Master Injection system FIT-	•Ve 200, F	FIT-Wi :	200 for	concre	ete			Δni	nex C	3
Performances Characteristic values of shear loads unde seismic action (performance category C1)		si-static a	action an	d						

Anchor size reinforcin	ig bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure														
Characteristic tension re	esistance		N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{1}$					
			$N_{Rk,s,C1}$	[kN]				-	0 ∙ A _s ∙ f	1				
Cross section area			As	[mm²]	50	79	113	154	201	214	491	616	804	
Partial safety factor Combined pull-out and	d aanarata fa	iluro	γMs,N	[-]					1,4 ²⁾					
Characteristic bond resi			ncrete C20	/25										
Temperature range I:	dry and wet		τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	12	11	10	8,5	
40°C/24°C	flooded bore	e hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5	No Perf	ormance l	Determine	d (NPC	
Temperature range II:	dry and wet	concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0	
80°C/50°C	flooded bore	e hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5			Determine	<u>`</u>	
Temperature range III: 120°C/72°C	dry and wet		$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
Characteristic bond resi	flooded bore		$\tau_{\rm Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0	No Perf	ormance	Determine	d (NPD	
Sharactenstic bond resi			$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
Femperature range I: 40°C/24°C f f f f f emperature range II: 30°C/50°C f	dry and wet	dry and wet concrete		[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
	flooded here hele		$ au_{\mathrm{Rk,C1}}$	[N/mm ²]	4,0	4,0	5,5	5,5	5,5	-,.	- / -	Determine	.,=	
	flooded bore hole		τ _{Rk,C1}	[N/mm ²]	2,5	2,5	3,7	3,7	3,7	No Perf	ormance I	Determine	d (NPC	
	ange I: flooded bore hol ange II: flooded bore hol	concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:	C Č		$\tau_{\rm Rk,C1}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	flooded bore	e hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,5	3,0	4,0	4,0	4,0			Determine		
			τ _{Rk,C1}	[N/mm ²] [N/mm ²]	1,6 2,0	1,9 2,5	2,7 3,0	2,7 3,0	2,7 3,0	3,0	3,0	Determine 3,5	3,5	
emperature range III:		concrete	$\tau_{\rm Rk,cr}$ $\tau_{\rm Rk,C1}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C			τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	· ·	,	Determine	,	
	flooded bore	e hole	τ _{Rk,C1}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	No Perf	ormance l	Determine	d (NPD	
			C2!	5/30					1,02					
Increasing factors for co	ncrete			0/37					1,04					
(only static or quasi-stat				5/45 0/50	1,07									
ψ_{c}				5/55					1,08 1,09					
				0/60					1,10					
Factor according to	Non-cracked	d concrete			10.1									
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked cor		- k ₈	[-]					7,2					
Concrete cone failure									7,2					
Factor according to	Non-crackee	dopporate	k	r 1					10.1					
CEN/TS 1992-4-5			k _{ucr}	[-]					10,1					
Section 6.2.3.1	Cracked cor	ncrete	k _{cr}	[-]					7,2					
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}					
Axial distance			S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting														
Edge distance			C _{cr,sp}	[mm]		$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$								
Axial distance			S _{cr,sp}	[mm]	2 C _{cr,sp}									
Installation safety factor	(dry and wet	concrete)	$\gamma_2 = \gamma_{inst}$		1,0					1,2				
Installation safety factor	(flooded bore	e hole)	$\gamma_2 = \gamma_{inst}$				1,4			No Perf	ormance I	Determine	d (NPE	
¹⁾ f _{uk} shall be tak ²⁾ in absence of	en from the national reg	specificati julation	ons of rein	forcing ba	ırs									
Fix Master Injec			Ve 200,	FIT-Wi 2	200 for	conc	rete							
Performances	-		-							-	Anne	ex C 4	ŀ	

Table C5: Characteristic value seismic action (perf					atic,	quas	i-stat	ic act	tion a	nd	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				II							
Characteristic shear resistance	V _{Rk,s}	[kN]				0,5	0 • A _s • 1	f _{uk} ¹⁾			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]				0,3	5 • A _s • 1	f _{uk} 1)			
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor	γms,v	[-]					1,5 ²⁾				
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	• W _{el} • 1	r 1) uk			
Characteristic bending moment	M ⁰ _{Rk,s, C1}	[Nm]			No Pe	erforman	ce Dete	rmined ((NPD)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial safety factor	γms,v	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎						2,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0				
Concrete edge failure											
Effective length of anchor	l _t	[mm]				l _t = m	in(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0				
¹⁾ f _{uk} shall be taken from the specificatior ²⁾ in absence of national regulation	is of reinforcin	g bars									
Fix Master Injection system FIT-Ve Performances Characteristic values of shear loads under st seismic action (performance category C1)				oncre	te				Anne	x C 5	

Table C6: Di	splaceme	ents under tensi	ion load ¹⁾	(threa	ded ro	od)				
Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90			0,0)70		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	255			0,2	245		

 $\ \, \overset{1)}{} \ \, Calculation \ \, of the \ \, displacement \\ \delta_{N0} = \delta_{N0} \text{-} factor \ \, \cdot \ \, \tau; \qquad \ \, \tau$

 τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

 Table C7:
 Displacements under shear load¹⁾ (threaded rod)

Anonor Size tine	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	d concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked con	crete C20/	25											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052		
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Cracked concrete	C20/25												
Temperature range I:			0,0	090	0,070								
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,1	105	0,105								
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170								
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	0,255 0,245									
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,2	219				0,170					
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245					
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N1} = \delta_{N1}$ -factor	·τ;	nent τ: action bonc	stress fo										
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	·τ; ·τ;			or tension						1			
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: D	τ; τ; isplacen	τ: action bond		or tension		Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: D Anchor size reinform	τ; τ; isplacen prcing bar	τ: action bond	hear lo	or tension Dad ¹⁾ (r	ebar)	Ø 14	Ø 16		Ø 25	Ø 28	Ø 32		
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: D Anchor size reinfo	τ; τ; isplacen prcing bar	τ: action bond	hear lo	or tension Dad ¹⁾ (r	ebar)	Ø 14 0,04	Ø 16 0,04		Ø 25	Ø 28			
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: D Anchor size reinfor Non-cracked concord All temperature	τ; τ; orcing bar crete C20/2 δ _{vo} -factor	τ: action bond	hear lo Ø 8	or tension Dad ¹⁾ (r Ø 10	ebar) Ø 12			Ø 20	I		0,03		
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; τ; isplacen orcing bar crete C20/ $\frac{\delta_{V0}}{\delta_{V0}}$ -factor δ _{V∞} -factor	τ: action bond nent under s 25 [mm/(kN)]	hear Ic Ø 8 0,06	or tension ()ad¹⁾ (r Ø 10 0,05	ebar) Ø 12	0,04	0,04	Ø 20 0,04	0,03	0,03	0,03		
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} \text{factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} \text{factor} \end{split}$ Table C9: D Anchor size reinfor Anchor size reinfor Non-cracked concerter All temperature ranges Cracked concrete	τ; τ; isplacen orcing bar crete C20/ $\frac{\delta_{V0}}{\delta_{V0}}$ -factor δ _{V∞} -factor	τ: action bond nent under s 25 [mm/(kN)]	hear Ic Ø 8 0,06	or tension ()ad¹⁾ (r Ø 10 0,05	ebar) Ø 12	0,04	0,04	Ø 20 0,04	0,03	0,03	0,03		
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	τ; τ; isplacen prcing bar crete C20/2 δ _{V0} -factor δ _{V∞} -factor C20/25	τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)]	hear Ic Ø 8 0,06 0,09	or tension bad¹⁾ (r Ø 10 0,05 0,08	ebar) Ø 12 0,05 0,08	0,04	0,04 0,06	Ø 20 0,04 0,05	0,03	0,03	Ø 32 0,03 0,04 0,06 0,10		

Fix Master Injection system FIT-Ve 200, FIT-Wi 200 for concrete

Performances Displacements (rebar) Annex C 7